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A General Equivalent Circuit for Coupled.CavitY

Slow-Wave Structures

H. J. CURNOW

Abstract—A number of structures of the slot-coupled cavity chain

type are used in high-power traveling-wave tubes. In these, different

relationships between the structure pass bands and the cavity and

slot resonances are found to exist. By the construction of equivalent

circuits which have patterns of current flow similar to those in the

real structures, this behavior is calculated and the importance of the

partial nature of the coupling and the relative alignment of the slots

is illustrated. It is possible to obtain from the circuits presented a

qualitative understanding of the general behavior of structures of

this type.

INTROD~-CTION

T

HE SLC)WWAITE transmission-fine structures

used in high-pom-er traveling-~vave tubes and

other related devices often take the form of stacks

of resonant cavities coupled together by slots in their

common walls. Because the boundary conditions are

complicated, the analysis of these structures by field

theory is very complex and does not give much insight

into their behavior. As the author has shown in a previ-

ous paper [1], a simple analogous lumped circuit can be

used to represent quite accurately the dispersion and

impedance properties of this type of strut ture if it cor-

responds closely to the geometrical configuration of the

structure, and if it takes into account that only part of

the current circulating in each cavit~- may be involved

in the coupling. The two circuits dealt with in the earlier

paper—’’partially coupled” and “staggered “-will be

shown to be special cases of a more general circuit,

which is useful in understanding the behavior of many

types of coupled-cavity structure.

THE GENERAL EQUIVALENT C] RCUIT

A single cavit>- resonating in its fundamental mode

can be represented by a simple resonant circuit C,, L,

(Fig. 1). The capacitance C“, represents the central part

of the cavity which is the region of strong axial electric

field, while the inductance L. represents the outer part

of the cavity which is the region of strong magnetic

fields and of current flow in the cavity wall. The reso-

nant frequency of the circuit.

j, = 1,2T(C.LJ”

is chosen to be equal to the known resonant frequency

of the cavity. The characteristic admittance

~“c = (~,,,’~’) 1r~

is of a more arbitrary nature and its ~’alue w-ill depend
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Fig. 1. Cavity and slot equivalent circuits

on how the voltage on the circuit is assumed to be re-

lated to the electric field in the cavity.

The type of structure considered here consists of a

stack of such cavities coupled together by slots in their

common walls. Central holes may also be cut to a How

passage of an electron beam, but the cotlpl ing introduced

by them would be negligible. The pattern of the slc,ts is

assumed to be simple enough for them to be represented

by a single terminal pair. The slots themselves form

microwave resonant elements and are represented by

parallel tuned circuits shunted across the terminal pairs

(Fig. 1). For long, thin slots it is appropriate to choose

the capacitance C. and the inductance L, so that at the

resonant frequency

f, = 1, 27r(C,LJ’2

the slots are a half wave length long. The character-

istic admittance

1“,, = (c,,’L,,)‘/’

\vill again be somewhat arbitrary, though it may be re-

lated to that of the slots regarded as TEhfl transmission

lines [2]. For the present purpose it is nc)t necessary to

regard Y“, and 1“,, as accurately known; their ratio will

be a significant parameter of the circuit, and its effective

value can best be determined experimentally. The slots

intercept some of the current circulating in each cavity

and make it common to the adjacent cavities. The pat-

tern of the slots cut in each wall will be the same

throughout the structure, but the patterns in the two

walls of any one cavity may be rotated with respect to

one another (Fig. 2). Thus some parts of the slots in one

~~rall \rill be opposite slots in the other wall, but :some
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Fig. 2. Complete equivalent circuit.

parts will be opposite unbroken wall. In an uncoupled

cavity the current would be distributed among an in-

finite number of paths. Some of these paths will be

broken by the coupling slots, and the assumptions just

made imply that each current path will be one of four

types, depending upon whether it is 1) unbroken by any

coupling slots, 2) broken only by a slot giving coupling

to the following cavity of the structure, 3) broken only

by a slot giving coupling from the previous cavity of the

structure, or 4) broken by two slots giving coupling to

the following cavity and from the previous one.

The equivalent circuit of this situation can be con-

structed by dividing the cavity inductance into four

parallel parts with values L./p, L,/m, L,/m, and L,/n,

where

p is the fraction of the circulating current not in-

volved in the coupling; type 1)

m is the fraction involved in coupling one way only;

types 2) and 3)

n is the fraction involved in coupling both ways;

type 4).

Since the whole current flow is contained within these

paths,

p+2m+l’z=l.

The circuit through each of these inductances is then

broken and connected to the terminals representing the

coupling slots. The complete equivalent circuit con-

structed as just described is shown in Fig. 2. The part

of the chain shown represents one cavity and the

coupling slots on either side.

The parameters of the structure which are of interest

are the transfer constant O and the characteristic inl -

pedance K. When a wave is traveling along the struc-

LC,m

Fig. 3. Complete circuit rearranged.

ture, (3 is the difference in phase between corresponding

quantities measured in adjacent cavities. The im-

pedance K is defined as

K = V2/2P

where P is the power carried by the wave and V is the

corresponding voltage amplitude appearing across the

relevant part of the structure, in this case the center of

the cavities. In the equivalent circuit, V will be the volt-

age appearing across the capacitance C.. The analysis of

the circuit shown in Fig. 2 is straightforward but tedi-

ous. The results are

[1 - (f/jC)’] [1 + urn - (f/f,)z]
cose=l —

a[(t?z + 12)2 – n + ?2(f/fc)2]

~ = _ 2(m + n)2(j(/j,) [1 + am – (~/j,)2]

aYc sine[(m + 74)2 – n + 7z(~/j,)2]2

where a = 2 ( Y#J YJJ.

It will be seen from these formulas that there are

three significant frequencies associated with the circuit.

There are two frequencies jl and f, at which cos O =1,

6 = O, and a frequency f3 at which cos 6 becomes infinite.

These frequencies are given by

j-, = -f.

fz = f.(1 + G,?,)’/’

-f3=f, , _(m+@’ 1/2,
[ n 1

The nature of these frequencies can be seen from the

equivalent circuit. fl is just the cavity resonant fre-

quency, while f.2is the slot resonant frequency modified

by the effect of the L,/m inductances. If the circuit is

rearranged as in Fig. 3, it becomes apparent that f~ is

the frequency at which the bridge is balanced, giving no

coupling between the slots. The formulas indicate that

there will be two pass bands with their 0 = O frequencies

at f 1and fz. The widths of these bands will depend upon
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the value of a;

frequency and

bands.
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but if~~ is real, it will act as a “stop”

thereby limit the width of one of the

SPECIAL CASES

The structure dealt with so far is a general and com-

plicated one. The simpler circuits given in the earlier

paper [1] are in fact special cases of it, important be-

cause they apply to a large number of actual structures.

There are two useful quantities which can be defined

as follows. The first is given by

k=m+n.

k is thus the fraction of the circulating current in one

wall of a cavity which is involved in the coupling. If the

slots are peripheral, then k will be effectively the fraction

of the periphery that they occupy, The second useful

quantity is the parameter a~ of the earlier paper which

is given by

ah = ak.

The first of the special cases is the “in-line partially

coupled” case in which the patterns of the slots in the

two walls of every cavity have the same orientation so

that the circulating current is intercepted either by both

sets of slots or by none. The equivalent circuit becomes

that of Fig. 4, and the following formulas apply.

In-1ine:

m= O,~?=k, p=l —k.

.fl = j., .fz = .fs, j“3 = .f~ = (1 – k)l/ye

K=–
2k(~/fJ 11 – (f/j_,)z]

a~Y, sin 0[1 – k – (j/~,)z]z “

The second of the special cases occurs when the pat-

terns of the slots in the two walls of each cavity are

rotated with respect to one another. Provided that k is

less than one half, a position may be found in which no

part of one set of slots is opposite any of the other. This

gives the case previously referred to as the “staggered”

circuit, but which perhaps should be more completely

identified as ‘(partially coupled staggered without over-

lap” ! The equivalent circuit for this is shown in Fig. 5,

and the following formulas apply.

Stagge~ed k < 1/2:

m=k It = o, p=l–zk

fl = -L’, ~z = (1 + a,)’/~. = ~.’

cos O = 1 – + [1 – (~/~J2] [1 + a~ – (j/j.)zj
ka~

2(j/fc) [1 + ak – Uif.)’l
~=–—

kal, Y. sin 9

A further special case arises in a staggered structure

SLOW-WAVE STRUCTURES
673

Fig. 4. partially coupled in-line circuit.
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Fig. 5. Partially coupled staggered circuit.

with k greater than one half. Here some parts o]f the

two slot-patterns in each cavity must overlap. The un-

coupled inductance L./p in Fig. 2 disappears, ancl the

following formulas apply.

Staggered with Overlap k> 1/2:

~=l—k
) n=2k -1, p=o

(1– ,{!)
f, =-f,, j2 = [1 + a(l – k)]’~., j, = j—-—j.

(2k – 1) ’12

[1 - (~/’C)2][l + a(l -k) - (j/f,)zj
coso=l ——

a[(l – k)2 + (2k – 1)(~/fc)2]

2k2(f/fJ [1 + a(l – k) – (j/J~J_ .
iY=–

a~, sin 0[(1 – k)z + (2k – l)(,f/jJ%]z

PASS-BAND CHA~ACTERISTICS

The usefulness of the circuits and formulas given in

the preceding sections can be determined only by com-

paring their properties with those of actual structures.

In this section the behavior of the pass bands of the

circuits will be described, taking a fixed value of a~

(= 0.5) and allowing k and the ratio&/~C to varv. (’]rak-

ing a fixed a~ and varying k is equivalent, for a fixed

slot size, to varying the number of slots. In the definition

of ak, Ys is the admittance of all the slot!s in parallel so

both k and Y. are proportional to the number of slots.)

The frequencies of the band edges can be found irom

the given formulas. The 0 = O frequencies are already

known as f I and fg, while the O= ~ frequencies are found

by putting cos O= – 1. The results are shown in Fig. 6

for the “in-line” case and in Fig. 7 for the “staggered

with no overlap” case. In the in-line case, the lower-

frequency pass band is influenced by the presence of the

“partial” resonance at frequency j~ = (1 --k) lf’f,. In the
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Fig. 6. In-line circuit, band edges.
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Fig. 7. Staggered circuit, band edges.
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Fig. 9. Staggered circuits, bandwidths.

staggered case, the value of j“z is greater thanj, with the

result that the lo}ver-frequency band is broader than the

upper. These same results are displayed again in Figs. 8

and 9 in terms of the bandwidth B. For a band extend-

ing from f. to f= this is defined as

~ = 2(f. –f,)

(f. + fo) “

Thus a negative value for B implies a band with nega-

tive group velocity.

COMPARISON WITH REAL STRUCTURES

From the formulas for the pass-band characteristics

of the equivalent circuits and the examples of Figs. 6 to

9 some deductions can be made about the behavior to

be expected from various types of slot-coupled structure.

Some structures have circular cavities and peripheral

slots, and these can be dealt with directly by comparison

with Fig. 2. The space-harmonic structure of Chodorov:

and Nalos [3] and the “long-slot” structure of Allen,

Kino, and Williams [4] are examples. The “clover-leaf”

structure of Chodorow and Craig [5] also uses slot

coupling, but the cavities are deformed so that the

direction of the coupling is reversed. The equivalent cir-

cuit must be modified by reversing the connections be-

tween the circuits representing adjacent cavities, and

the true dispersion characteristic is obtained by re-

placing O by (r –0); this interchanges the values of f o

and f. and so changes the sign of B. The same situation

exists in the “centipede” structure [5], although its

coupling elements are actually reversed loops.

In a totally coupled structure (in-line with k =1) the

two pass bands should have their O= O frequencies at the
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cavity and slot resonances; the two bandwidths should

be equal in magnitude but opposite in sign, the higher-

frequency band having positive group velocity. A

totally slot-coupled structure would be difficult to real-

ize in practice since the center portion of the cavity wall

would become unsupported. However, this behavior is

found in the “centipede” structure [.s ] when allowance

is made for the reversed coupling. The cavity and loop

resonant frequencies set the 9 = r band edges, and the

lower-frequency band has positive group velocity.

A partially coupled in-line structure should behave

differently according to whether ~. is greater than f,, lies

between ~. and jk, or is less than j~. In the first case,

which occurs when the slots are comparatively short,

the bands should again have group velocities of opposite

sign but the lower-frequency, cavity, band should be

narrower than the higher-frequency band. As the admit-

tance ratio parameter ak is increased, this difference

should become greater; since the lower band cannot

extend below the partial resonance frequency -f~, its

width should become relatively independent of ah for

large values of ak. This type of behavior is shown, for

example, by the space-harmonic structure [3] and the

‘(clover-leaf” structure [5], allowing for the reversed

coupling in the latter. In these structures, reducing the

height of the cavities or widening the slots, which would

increase a~ does not greatly increase the width of the

cavity pass band. If the slot resonant frequency is less

than the cavity resonant frequency, then the cavity

pass band will be the upper one, and this should have

positive group velocity and be the broader. The lower-

frequency band, extending from its 0 = O frequency j.

to~vard the partial resonance frequency f~, should have

either positive or negative group velocity as ~, is less

than or greater thanf~. This type of behavior is shown in

practice by the “long-slot” structure [4], and has been

described and explained in terms of field theory by

Allen and I<ino [2] and by Bevensee [6]. A comparison

between the results of the equivalent circuit theory and

experiment was given for this structure in the earlier

paper [1].

The behavior of staggered structures is characterized

by the raising of the /3= O frequency of the slot pass band

from the slot resonant frequency f,, to an effective value

f,’ and by the absence of the partial resonance, This

means that the higher-frequency band should generally

be narrower than the lower one (Fig. 9) and the width

of the latter should be more dependent on the value of

ak than in the in-line case. This indicates that partially

coupled staggered structures may be better than their

in-line counterparts when it is desirable to use the

lower, cavity, pass band since the limitations im]posed

by the proximity of the slot and partial cavity reso-

nances are absent. This appears to be borne out in prac-

tice—as for example, in the “Hughes” structure [7], the

Bell M4040 tube [8], and the “modified clover-leaf”

structure of Harris [9].

These examples clearly show that many of the proper-

ties of the various types of coupled-cavity structure can

be understood and predicted from the eq uivalent circuit.
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