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A General Equivalent Circuit for Coupled-Cavity
Slow-Wave Structures

H. J. CURNOW

Abstract—A number of structures of the slot-coupled cavity chain
type are used in high-power traveling-wave tubes. In these, different
relationships between the structure pass bands and the cavity and
slot resonances are found to exist. By the construction of equivalent
circuits which have patterns of current flow similar to those in the
real structures, this behavior is calculated and the importance of the
partial nature of the coupling and the relative alignment of the slots
is illustrated. It is possible to obtain from the circuits presented a
qualitative understanding of the general behavior of structures of
this type.

INTRODUCTION

HE SLOW-WAVE transmission-line structures
Tused in high-power traveling-wave tubes and

other related devices often take the form of stacks
of resonant cavities coupled together by slots in their
common walls. Because the boundary conditions are
complicated, the analysis of these structures by field
theory is very complex and does not give much insight
into their behavior. As the author has shown in a previ-
ous paper [1], a simple analogous lumped circuit can be
used to represent quite accurately the dispersion and
impedance properties of this type of structure if it cor-
responds closely to the geometrical configuration of the
structure, and if it takes into account that only part of
the current circulating in each cavity may be involved
in the coupling. The two circuits dealt with in the earlier
paper—“partially coupled” and “staggered”—will be
shown to be special cases of a more general circuit,
which is useful in understanding the behavior of many
types of coupled-cavity structure.

Tae GENERAL EQUIVALENT CiRCUIT

A single cavity resonating in its fundamental mode
can be represented by a simple resonant circuit C,, L.
(Fig. 1). The capacitance . represents the central part
of the cavity which is the region of strong axial electric
field, while the inductance L. represents the outer part
of the cavity which is the region of strong magnetic
fields and of current flow in the cavity wall. The reso-
nant frequency of the circuit.

fe = 127(CoLe)'?
is chosen to be equal to the known resonant frequency
of the cavity. The characteristic admittance
Y= (C./L)*
is of a more arbitrary nature and its value will depend
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Fig. 1. Cavity and slot equivalent circuits.

on how the voltage on the circuit is assumed to be re-
lated to the electric field in the cavity.

The type of structure considered here consists of a
stack of such cavities coupled together by slots in their
common walls. Central holes mayv also be cut to allow
passage of an electron beam, but the coupling introduced
by them would be negligible. The pattern of the slots is
assumed to be simple enough for them to be represented
by a single terminal pair. The slots themselves form
microwave resonant elements and are represented by
parallel tuned circuits shunted across the terminal pairs
(Fig. 1). For long, thin slots it is appropriate to choose
the capacitance C, and the inductance L, so that at the
resonant frequency

fo = 1,20(C L)\

the slots are a half wave length long. The character-
istic admittance

Vo= (C,/L)"

will again be somewhat arbitrary, though it may be re-
lated to that of the slots regarded as TEM transmission
lines [2]. For the present purpose it is not necessary to
regard ¥, and Y, as accurately known; their ratio will
be a significant parameter of the circuit, and its effective
value can best be determined experimentally. The slots
intercept some of the current circulating in each cavity
and make it common to the adjacent cavities. The pat-
tern of the slots cut in each wall will be the same
throughout the structure, but the patterns in the two
walls of any one cavity may be rotated with respect to
one another (Fig. 2). Thus some parts of the slots in one
wall will be opposite slots in the other wall, but some
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Fig. 2.

Complete equivalent circuit.

parts will be opposite unbroken wall. In an uncoupled
cavity the current would be distributed among an in-
finite number of paths. Some of these paths will be
broken by the coupling slots, and the assumptions just
made imply that each current path will be one of four
types, depending upon whether it is 1) unbroken by any
coupling slots, 2) broken only by a slot giving coupling
to the following cavity of the structure, 3) broken only
by a slot giving coupling from the previous cavity of the
structure, or 4) broken by two slots giving coupling to
the following cavity and from the previous one.

The equivalent circuit of this situation can be con-
structed by dividing the cavity inductance into four
parallel parts with values L,/p, L,/m, L./m, and L,/n,
where

p 1s the fraction of the circulating current not in-
volved in the coupling; type 1)

m 1is the fraction involved in coupling one way only;
types 2) and 3)

n is the fraction involved in coupling both ways;
type 4).

Since the whole current flow is contained within these
paths,
p+2m+n=1

The circuit through each of these inductances is then
broken and connected to the terminals representing the
coupling slots. The complete equivalent circuit con-
structed as just described is shown in Fig. 2. The part
of the chain shown represents one cavity and the
coupling slots on either side.

The parameters of the structure which are of interest
are the transfer constant § and the characteristic im-
pedance K. When a wave is traveling along the struc-
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Fig. 3. Complete circuit rearranged.

ture, 6 is the difference in phase between corresponding
quantities measured in adjacent cavities. The im-
pedance K is defined as

K = V?/2P

where P is the power carried by the wave and V is the
corresponding voltage amplitude appearing across the
relevant part of the structure, in this case the center of
the cavities. In the equivalent circuit, ¥ will be the volt-
age appearing across the capacitance C.. The analysis of
the circuit shown in Fig. 2 is straightforward but tedi-
ous. The results are

(1 — (/2L + am — (7/1)?]
a[(m + n)? — n + n(f/f)*]
20m + n)*(f/fI 11 + am — (f/1.)?]
aV,sin0[(m + n)t — n + n(f/f.)2]
where a=2(Y.f./ Vfs).
It will be seen from these formulas that there are
three significant frequencies associated with the circuit.
There are two frequencies f; and fy at which cos #=1,

6 =0, and a frequency f; at which cos @ becomes infinite.
These frequencies are given by

cos =1 —

K=—

fl :fc

fo = f:(1 + am)*?

fs zfc[l _ M}llﬁ‘
n

The nature of these frequencies can be seen from the
equivalent circuit. f; is just the cavity resonant fre-
quency, while f; is the slot resonant frequency modified
by the effect of the L./m inductances. If the circuit is
rearranged as in Fig. 3, it becomes apparent that f; is
the frequency at which the bridge is balanced, giving no
coupling between the slots. The formulas indicate that
there will be two pass bands with their =0 frequencies
at fy and fy. The widths of these bands will depend upon
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the value of a; but if f; is real, it will act as a “stop”
frequency and thereby limit the width of one of the
bands.

SriEcialL CAsEs

The structure dealt with so far is a general and com-
plicated one, The simpler circuits given in the earlier
paper [1] are in fact special cases of it, important be-
cause they apply to a large number of actual structures.

There are two useful quantities which can be defined
as follows. The first is given by

k=m -+ n.

k is thus the fraction of the circulating current in one
wall of a cavity which is involved in the coupling. If the
slots are peripheral, then % will be effectively the fraction
of the periphery that they occupy. The second useful
quantity is the parameter a; of the earlier paper which
is given by

ap = ak.

The first of the special cases is the “in-line partially
coupled” case in which the patterns of the slots in the
two walls of every cavity have the same orientation so
that the circulating current is intercepted either by both
sets of slots or by none. The equivalent circuit becomes
that of Fig. 4, and the following formulas apply.

In-line:

m=0,n=FkFp=1—"F
f1 =fc, fz =fs,f3 = fk = (1 - k)”{“’fc
[0 — (fol[t = (/7
wll — k= (/1]
e Vesin[1 — & — (f/1)?]?

cos 0 =1+

K =

The second of the special cases occurs when the pat-
terns of the slots in the two walls of each cavity are
rotated with respect to one another. Provided that £ is
less than one half, a position may be found in which no
part of one set of slots is opposite any of the other. This
gives the case previously referred to as the “staggered”
circuit, but which perhaps should be more completely
identified as “partially coupled staggered without over-
lap”! The equivalent circuit for this is shown in Fig. 5,
and the following formulas apply.

Staggered k<<1/2:

m = k, =0, p=1-—2k
Si=fo  fo=Q+a)fe =11
1
cosf =1 — — [1 — (f/f2{1 + an — (F/f)2

7/ 2l U Sl DR
a ka, Y, sin @

A further special case arises in a staggered structure
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Fig. 4. Partially coupled in-line circuit,
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Fig. 5. Partially coupled staggered circuit.
with & greater than one half. Here some parts of the
two slot-patterns in each cavity must overlap. The un-
coupled inductance L./p in Fig. 2 disappears, and the
following formulas apply.

Staggered with Overlap k>1/2:

m=1—rF, n=2k—1, p=20
_ _ T
fi=fo fo=[14 el =B, f ](Zk - 1,)1/2fc
_ [1— (F/f2 1+ a(t — k) — (f/£)?
cosf =1 — -
al(1 — k)2 + (2 — 1)(f/1)?
K= — 2R2(f/f) 1 + all — &) — (J/7)%

aV,sin0[(1— k)2 + 2k — DG

Pass-BAND CHARACTERISTICS

The usefulness of the circuits and formulas given in
the preceding sections can be determined only by com-
paring their properties with those of actual structures.
In this section the behavior of the pass bands of the
circuits will be described, taking a fixed value of a;
(=0.5) and allowing % and the ratio f,/f, to vary. (Tak-
ing a fixed ax and varying k is equivalent, for a fixed
slot size, to varying the number of slots. In the definition
of a;, Y, is the admittance of all the slots in parallel so
both k and ¥, are proportional to the number of slots.)
The frequencies of the band edges can be found {rom
the given formulas. The § =0 frequencies are already
known as f1 and f5, while the 8 =7 frequencies are found
by putting cos 8= —1. The results are shown in Fig. 6
for the “in-line” case and in Fig. 7 for the “staggered
with no overlap” case. In the in-line case, the lower-
frequency pass band is influenced by the presence of the
“partial” resonance at frequency fr= (1 —k)V*f.. In the
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Fig. 9. Staggered circuits, bandwidths.

staggered case, the value of f3 is greater than f, with the
result that the lower-frequency band is broader than the
upper. These same results are displayed again in Figs. 8
and 9 in terms of the bandwidth B. For a band extend-
ing from f, to f, this is defined as

B 2(fx — fo) .
(f1r _l"fO)

Thus a negative value for B implies a band with nega-
tive group velocity.

COMPARISON WITH REAL STRUCTURES

From the formulas for the pass-band characteristics
of the equivalent circuits and the examples of Figs. 6 to
9 some deductions can be made about the behavior to
be expected from various types of slot-coupled structure.
Some structures have circular cavities and peripheral
slots, and these can be dealt with directly by comparison
with Fig. 2. The space-harmonic structure of Chodorow
and Nalos [3] and the “long-slot” structure of Allen,
Kino, and Williams [4] are examples. The “clover-leaf”
structure of Chodorow and Craig [5] also uses slot
coupling, but the cavities are deformed so that the
direction of the coupling is reversed. The equivalent cir-
cuit must be modified by reversing the connections be-
tween the circuits representing adjacent cavities, and
the true dispersion characteristic is obtained by re-
placing 8 by (x—#8); this interchanges the values of fq
and f, and so changes the sign of B. The same situation
exists in the “centipede” structure [5], although its
coupling elements are actually reversed loops.

In a totally coupled structure (in-line with 2=1) the
two pass bands should have their § =0 {requencies at the
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cavity and slot resonances; the two bandwidths should
be equal in magnitude but opposite in sign, the higher-
frequency band having positive group velocity. A
totally slot-coupled structure would be difficult to real-
ize in practice since the center portion of the cavity wall
would become unsupported. However, this behavior is
found in the “centipede” structure [5] when allowance
is made for the reversed coupling. The cavity and loop
resonant frequencies set the § =7 band edges, and the
lower-frequency band has positive group velocity.

A partially coupled in-line structure should behave
differently according to whether f, is greater than f., lies
between f, and fi, or is less than fi. In the first case,
which occurs when the slots are comparatively short,
the bands should again have group velocities of opposite
sign but the lower-frequency, cavity, band should be
narrower than the higher-frequency band. As the admit-
tance ratio parameter a; is increased, this difference
should become greater; since the lower band cannot
extend below the partial resonance frequency fi, its
width should become relatively independent of a; for
large values of a;. This type of behavior is shown, for
example, by the space-harmonic structure [3] and the
“clover-leaf” structure [5], allowing for the reversed
coupling in the latter. In these structures, reducing the
height of the cavities or widening the slots, which would
increase a: does not greatly increase the width of the
cavity pass band. If the slot resonant frequency is less
than the cavity resonant frequency, then the cavity
pass band will be the upper one, and this should have
positive group velocity and be the broader. The lower-
frequency band, extending from its 0 =0 frequency f,
toward the partial resonance frequency fi, should have
either positive or negative group velocity as f; is less
than or greater than f;. This type of behavior is shown in
practice by the “long-slot” structure [4], and has been
described and explained in terms of field theory by
Allen and Kino [2] and by Bevensee [6]. A comparison
between the results of the equivalent circuit theory and
experiment was given for this structure in the earlier
paper [1].

The behavior of staggered structures is characterized
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by the raising of the § =0 frequency of the slot pass band
from the slot resonant frequency f,, to an effective value
f’ and by the absence of the partial resonance., This
means that the higher-frequency band should generally
be narrower than the lower one (Fig. 9) and the width
of the latter should be more dependent on the value of
ax than in the in-line case. This indicates that partially
coupled staggered structures may be better than their
in-line counterparts when it is desirable to use the
lower, cavity, pass band since the limitations imposed
by the proximity of the slot and partial cavity reso-
nances are absent. This appears to be borne out in prac-
tice—as for example, in the “Hughes” structure [7], the
Bell M4040 tube [8], and the “modified clover-leaf”
structure of Harris [9].

These examples clearly show that many of the proper-
ties of the various types of coupled-cavity structure can
be understood and predicted from the equivalent circuit.
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